Be choosy about carbs. You can decide which ones you eat, and how much. Look for those that are low on the glycemic index (for instance, asparagus is lower on the glycemic index than a potato) or lower in carbs per serving than others. Whole grains are better choices than processed items, because processing removes key nutrients such as fiber, iron, and B vitamins. They may be added back, such as in “enriched” bread.
It is possible to combine the results of several small studies to produce evidence that is stronger than that available from each study alone—a statistical method known as meta-analysis. One of four such analyses, conducted in 2006, looked at 19 studies on a total of 1,084 patients.[23] It concluded that a third achieved an excellent reduction in seizure frequency and half the patients achieved a good reduction.[18]
Before starting, ask yourself what is really realistic for you, Mattinson suggests. Then get your doctor’s okay. You may also work with a local registered dietitian nutritionist to limit potential nutrient deficiencies and talk about vitamin supplementation, as you won’t be eating whole grains, dairy, or fruit, and will eliminate many veggies. “A diet that eliminates entire food groups is a red flag to me. This isn’t something to take lightly or dive into headfirst with no medical supervision,” she says.
There were [no statistical] differences between the low- and high- [meal frequency] groups for adiposity indices, appetite measurements or gut peptides (peptide YY and ghrelin) either before or after the intervention. We conclude that increasing meal frequency does not promote greater body weight loss under the conditions described in the present study.
On the ketogenic diet, carbohydrates are restricted and so cannot provide for all the metabolic needs of the body. Instead, fatty acids are used as the major source of fuel. These are used through fatty-acid oxidation in the cell's mitochondria (the energy-producing parts of the cell). Humans can convert some amino acids into glucose by a process called gluconeogenesis, but cannot do this by using fatty acids.[57] Since amino acids are needed to make proteins, which are essential for growth and repair of body tissues, these cannot be used only to produce glucose. This could pose a problem for the brain, since it is normally fuelled solely by glucose, and most fatty acids do not cross the blood–brain barrier. However, the liver can use long-chain fatty acids to synthesise the three ketone bodies β-hydroxybutyrate, acetoacetate and acetone. These ketone bodies enter the brain and partially substitute for blood glucose as a source of energy.[56]
Conklin's fasting therapy was adopted by neurologists in mainstream practice. In 1916, a Dr McMurray wrote to the New York Medical Journal claiming to have successfully treated epilepsy patients with a fast, followed by a starch- and sugar-free diet, since 1912. In 1921, prominent endocrinologist Henry Rawle Geyelin reported his experiences to the American Medical Association convention. He had seen Conklin's success first-hand and had attempted to reproduce the results in 36 of his own patients. He achieved similar results despite only having studied the patients for a short time. Further studies in the 1920s indicated that seizures generally returned after the fast. Charles P. Howland, the parent of one of Conklin's successful patients and a wealthy New York corporate lawyer, gave his brother John Elias Howland a gift of $5,000 to study "the ketosis of starvation". As professor of paediatrics at Johns Hopkins Hospital, John E. Howland used the money to fund research undertaken by neurologist Stanley Cobb and his assistant William G. Lennox.[10]